Sunday, 30 November 2014

Genetic Engineering – GMO

Genetic Engineering - GMO
Among the hottest and most controversial issues in the world today is genetic engineering. With protests against Monsanto on May 25th in over 400 cities, people have shown that it is a topic they honestly care about. Largely, the stances are highly polarized with opponents saying it’s all cancer causing, poisonous, and environmentally dangerous and supporters saying it is wonderful, improving yield and making everyone except “anti-science” opponents happy.The problem with polarized positions is they
typically miss the reality of the issue and avoid talking about the overall facts. Polarized texts instead skip straight tothe evidence supporting their position. If it is “good” or “bad.?, but, in real life, I think it is important to lay out exactly what we are talking about before we try to say?The first question we have to address, before we talk about the potential and danger of genetic modification, is what exactly is genetic modification?
You can just skip the next 4 paragraphs if you want to avoid the science. Otherwise, I can advise continuing to read, using the sources I provide, or using a search engine.


Genetic Engineering – GMO


In the modern
 context we are talking primarily about the introduction of foreign genetic material, almost always coding for a protein, which are molecular workhorses capable of doing everything from binding with other proteins to changing what DNA is activated or otherwise not, to themselves performing reactions and either creating or breaking down molecules. This DNA is introduced into the genome through a double-strand break and insertion (what I call “splice-in”) into the genome.The origin of this inserted sequence,
or maybe even the improvement of an existing gene sequence, is attained through a number of different methods: all depending on the goal. It can entail homologous DNA recombination (meaning genes are mixed together, as in family shuffling), through non-homologous end joining (like incremental truncation for the creation of hybrid proteins aka ITCHY, with or without shuffling), through Error-Prone-PCR to induce random mutations in the gene (resulting in mutant sequences).Which means using existing techniques we’re often inserting a new piece of code, complete with its own regulatory mechanisms (transcription factors), into the cell and inducing a targeted insertion with endonucleases, something like Fok1, TAL-effectors, or CRISPR, and hoping this doesn’t accidentally alter any important regulatory or coding elements elsewhere within the cell. The tertiary (or inter-protein interactions) of the proteins being introduced are not fully characterized.


Genetic Engineering – GMO


But, current usage has not been sufficiently responsible 
in some cases, and in fact viral DNA containing an extra Cmvgene and promoter sequence (Gene VI) has recently been found in almost all GM crops. This seems to be able to activate transcription or expression of any cellular mRNA (Ryabova et al, 2002), meaning it can lead to the production of the wrong proteins. Gene VI also codes for a protein which does, among other things, suppress RNA silencing processes: it weakens the body’s reaction against viruses (Haas et al. 2008). Gene VI even makes plants less capable of defending against bacteria (Love et al. 2012). Unfortunately, this sequence was discovered in all of Monsanto’s transgene crops, and this, many years after they had already been approved in the US (Podevin & du Jardin, 2012).Now that we know what we are talking about, we can ask ourselves: is this safe? Well, is anything in science inherently safe or dangerous?
If any, precautions you take, it really all depends on what you are doing, how you are going about it, and what.I don’t think we can regard all genetic modification
as being equal. Huge successes in the realm of unicellular genetic modification have been seen, for instance using modified yeast to produce insulin or other molecules which would otherwise require complex industrial processes to create (for example in the realm of fuel alternatives). This use of genetic modification, isolated from the natural world,seems to only bring benefits and is unreasonable to oppose.Unfortunately, a lot of the efforts towards modifying multicellular organisms like plants have relied on genetic resistance to endocrine disruptors -disrupt metabolism and internal processes- or toxins. This means that their
usefulness and use depends on the simultaneous use of a chemical which will do ecological damage. These chemicals remove competition for the plants by killing anything lacking resistance-genes (for instance Glyphosate aka Roundup), they do this by destroying their metabolism. These chemicals are often, if not always, non-selective and thus will wreak havoc on the metabolism of anything unlucky enough to come into contact with these chemicals.This toxicity also includes mammals, with a highly questioned 2 year rat study showing a significantly higher death rate of 2-3x more than normal, liver congestions and necrosis were 2.5-5.5 times higher, tumor risk in males 4x higher, and more kidney deficiencies than normal. (Seralini et al, 2012). The paper has since been retracted, due to his choice of species and sample size.
The arguments used against this fact is that destruents (which are the most important part of the ecological cycle since they turn dead organic matter -with carbon- into inorganic -without carbon- material for plants to use) like
Earthworms, other and bacteria parts of the soil ecology, will adapt relatively quickly to this, that the effects are likely limited, and that the doses we consume of them in our produce are relatively small.But, none of those arguments are fully valid: only some destruents will adapt but many will invariably disappear from the soil at least temporarily (years), since none of these chemicals degrade quickly. This makes the soil less fertile for future generations.
Bt toxin plants are often mentioned -plants which produce their own insecticide- along with the statement that they have led to reduced pesticide use if that was not enough to convince us to avoid GM pest control. Now, to be truthful, the absolute worldwide use of insecticides has sunk since the introduction of Bt organisms. But, the overall use of pesticides and herbicides has continued to rise, especially as resistance develops in the “target” populations and making Bt less effective.Using these and similar chemicals likely contribute to the continued death of the bees: Colony Collapse Disorder, which currently wipes out approx 30-40% of colonies every year in the US (15% is acceptable at the end of winter). Of course, the disorder may also be related to the use of monocultures, which can be intensified by the use of total herbicides like Roundup. In the end, it is likely a mix of both the chemicals and the monocultures.Now, the thing is that these Bt toxins appear to not even be harmless to mammals (Portilho et al., 2013) and we need to ask ourselves about the ecological sense in creating something which cannot be eaten by the other organisms in the ecosystem. The actual mechanism of action of Bt is not even fully established, yet we are consuming it regularly?
Now, before we say that genetic engineering is inherently bad, there are in fact more responsible ways to use this technology even in the realm of multicellular organisms. A really good example is the “golden rice” which is rice with an added enzyme to produce beta-carotine (basically Vitamin A, which we cannot synthesize ourselves). The research was done relatively transparently, seed created and distributed at cost or for free. The rice is even shown to contain more vitamin A than spinach (Tang, 2012).
Meanwhile the World Health Organization advises the continuation of supplement programs instead of giving the people a way to produce the vitamins they need in their own soil. The anti-GM movement has also so far been largely inclined to oppose all genetic
lump and modification golden rice in with roundup-ready corn.Unfortunately, while Monsanto has the economic power to push their products through, even block labeling in certain nations (e.g the US, where despite public support for labeling, the senate blocked an amendment 71-to-27 which would have allowed states to label GMOs if they wanted to, on Thursday May 23rd, 2013) general suspicion of genetic engineering has led to the use of this rice also being opposed, despite the fact that no new chemicals would be needed in its use, and that the new gene actually has a beneficial ecological role.
We are being misled. The world is not
white and black, and we cannot lump an entire branch of science together with those abusing it. Luckily, the world may be open to waking up to this fact. Recent global protests have seen millions marching against Monsanto, not against genetic modification. 
goals, responsibility and methods and transparency, as always the issues are goals. Companies like DuPont and Monsanto are not here to help the world’s farmers, they are not there to help feed us. The people making the decisions, as always in an LLC(Limited Liability Company), are not even responsible for any consequences they cause through the company’s actions. They even have personal interest in reducing transparency so they can hinder people from finding out about problems or mistakes for long enough that they can become filthy rich.They were producing poisons (including Agent Orange) since before they were working to supposedly feed the world.
They work very hard to try to discredit many of the studies I have linked in this article, but I encourage you to read the studies yourself. If anything, the fact the data is open for us all to see, and their methods of analysis, gives me more faith in them than in Monsanto, who has famously misrepresented and even falsified data in the past (e.g PCBs, Roundup) and has monetary interest in ignoring the warnings.Both a recent New York Times article and a Forbes rebuttal concentrated on the economic values of Monsanto’s crops, cherry-picking economic data. What is strange is how this discussion has been so railroaded into the realm of statistics instead of real world ecological and health consequences.
So, are GMOs bad? In my opinion, there are some wonderful applications for this technology that have little or limited risk for negative consequences. Meanwhile, the way the technology is being used at the moment, in tandem with dangerous chemicals, is obviously not acceptable. To make genetic engineering efforts, though it may be a good idea to not only forbid the patenting of genes, as some companies are trying to do in regard to the human genome: , and analysis, publicly available.methods and data Only then can we help insure that decisions are not being made independent of the data, to help prevent decisions being made only in light of the profit margin. 


Genetic Engineering – GMO